22 research outputs found

    Nanobiosensors for health care

    Get PDF

    Perovskite Nanomaterials – Synthesis, Characterization, and Applications

    Get PDF
    Inorganic perovskite-type oxides are fascinating nanomaterials for wide applications in catalysis, fuel cells, and electrochemical sensing. Perovskites prepared in the nanoscale have recently received extensive attention due to their catalytic nature when used as electrode modifiers. The catalytic activity of these oxides is higher than that of many transition metals compounds and even some precious metal oxides. They exhibit attractive physical and chemical characteristics such as electronic conductivity, electrically active structure, the oxide ions mobility through the crystal lattice, variations on the content of the oxygen, thermal and chemical stability, and supermagnetic, photocatalytic, thermoelectric, and dielectric properties

    Graphene — A Platform for Sensor and Biosensor Applications

    Get PDF
    Graphene, mother of all carbon materials, has opened up new era of exploration due to its unique properties. Graphene, one-atom thick, exhibits a unique chemical structure and outstanding electronic, optical, thermal, and mechanical properties that made it compelling for various engineering applications. Graphene and graphene-based materials are promising candidates for fabricating state-of-the-art nano-scale sensors and biosensors. They featured with good conductivity and large specific surface area thereby; graphene-based sensors/biosensors performed well with good accuracy, rapidness, high sensitivity and selectivity, low detection limits, and long-term stability. They are ideally used as gas sensors, electrochemical sensors for heavy metal ions, immunosensors and dihydronicotinamide dinucleotide NADH, DNA, catecholamine neurotransmitters, paracetamol, glucose, H2O2, hemoglobin, and myoglobin biosensors. This chapter reviews the applications of graphene in nanotechnology since it came to the field particularly in sensing and biosensing applications. It updates the reader with the scientific progress of the current use of graphene as sensors and biosensors. There is still much room for the scientific research and application development of graphene-based theory, materials, and devices. Despite the vast amount of research already conducted on graphene for various applications, the field is still growing and many questions remain to be answered

    Acute mountain sickness.

    Get PDF
    Acute mountain sickness (AMS) is a clinical syndrome occurring in otherwise healthy normal individuals who ascend rapidly to high altitude. Symptoms develop over a period ofa few hours or days. The usual symptoms include headache, anorexia, nausea, vomiting, lethargy, unsteadiness of gait, undue dyspnoea on moderate exertion and interrupted sleep. AMS is unrelated to physical fitness, sex or age except that young children over two years of age are unduly susceptible. One of the striking features ofAMS is the wide variation in individual susceptibility which is to some extent consistent. Some subjects never experience symptoms at any altitude while others have repeated attacks on ascending to quite modest altitudes. Rapid ascent to altitudes of 2500 to 3000m will produce symptoms in some subjects while after ascent over 23 days to 5000m most subjects will be affected, some to a marked degree. In general, the more rapid the ascent, the higher the altitude reached and the greater the physical exertion involved, the more severe AMS will be. Ifthe subjects stay at the altitude reached there is a tendency for acclimatization to occur and symptoms to remit over 1-7 days

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Poly(3,4-ethylenedioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate

    No full text
    A novel biosensor using poly(3,4-ethylene dioxythiophene) (PEDOT) modified Pt electrode was developed for selective determination of dopamine (DA) in presence of high concentrations of ascorbic acid (AA) and uric acid (UA) with a maximum molar ratio of 1/1000, and 1/100 in the presence of sodium dodecyl sulfate (SDS). SDS forms a monolayer on PEDOT surface with a high density of negatively charged end directed outside the electrode. The electrochemical response of dopamine was improved by SDS due to the enhanced accumulation of protonated dopamine via electrostatic interactions. The common overlapped oxidation peaks of AA, UA and DA can be resolved by using SDS as the DA current signal increases while the corresponding signals for AA and UA are quenched. The use of SDS in the electrochemical determination of dopamine using linear sweep voltammetry at modified electrode PEDOT/Pt resulted in detecting dopamine at relatively lower concentrations. The DA concentration could be measured in the linear range of 0. , respectively. The validity of using this method in the determination of dopamine in human urine was also demonstrated

    Electrochemical sensor based on incorporation of gold nanoparticles, ionic liquid crystal, and β-cyclodextrin into carbon paste composite for ultra-sensitive determination of norepinephrine in real samples

    No full text
    A novel, reliable electrochemical sensor is fabricated for direct and sensitive determination of norepinephrine (NE) based on gold nanoparticles, ionic liquid crystal, and β-cyclodextrin modified carbon paste electrode, namely AuILCCDCPE. The ionic liquid crystal (ILC) played a key role in improving the current response of electro-oxidation of NE compared with other ionic liquids modified electrodes. The ILC increased the ionic conductivity of the paste and formed noncovalent interactions with both host (CD) and guest (NE) compounds. The solid state structure of the ILC helped in the formation of ordered films in the paste. Furthermore, CD and Au nanoparticles raised the stability and the electrocatalytic ability of the proposed sensor. Under optimized conditions, the fabricated electrochemical sensor showed a good electrochemical response towards NE in human urine in the linear dynamic ranges of 0.05–10 μmol/L and 20–300 μmol/L with a correlation coefficient of 0.999 and detection limit of 3.12 × 10−9 mol/L in the low concentration range. The practical analytical performance of the sensor was attained for determination of NE in real samples with satisfied recovery results. This sensor has great ability to be extended for electrochemical applications in assays of other drugs.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Probing cysteine self-assembled monolayers over gold nanoparticles -Towards selective electrochemical sensors

    No full text
    a b s t r a c t Cysteine forms self-assembled monolayers over gold nanoparticles. Based on this knowledge, a novel electrochemical sensor (Au-Au nano -Cys-SDS) has been constructed by the formation of self-assembly monolayer (SAM) of cysteine on gold-nanoparticles modified gold electrode (Au-Au nano -Cys) to be utilized for determination of dopamine in the presence of sodium dodecyl sulfate (SDS). Electrochemical investigation and characterization of the modified electrode sensor was achieved using cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron, and atomic force microscopies. Au-Au nano -Cys electrode in the presence of SDS gave comparable high current response to that of the gold nanoparticles modified gold electrode (Au-Au nano ). The Au-Au nano -Cys-SDS electrode current signal was remarkably stable via repeated cycles and long term stability due to the strong Au S bond. Very small peak separation, almost zero or 15 mV peak separation was also obtained by repeated cycles indicating unusual high reversibility. The oxidation peak current was determined to be linearly dependent on the dopamine concentration. A resulting calibration curve using square wave voltammetry (SWV) was obtained over concentration range of 30-100 mol L −1 and 120-320 mol L −1 with correlation coefficients of 0.996 and 0.994 and a limit of detection of 16 and 57 nmol L −1 , respectively. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of tertiary mixture of ascorbic acid AA, dopamine, and acetaminophen APAP was explored at this modified electrode. It has been demonstrated that Au-Au nano -Cys-SDS electrode can be used as a sensor with excellent reproducibility, sensitivity, and long term stability

    Designed electrochemical sensor based on metallocene modified conducting polymer composite for effective determination of tramadol in real samples

    No full text
    A novel composite for the electrochemical sensing of tramadol (Tr) was developed by the inclusion of a metallocene mediator between two layers of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) polymer, in the presence of sodium dodecyl sulfate (SDS), i.e., P/mediator/P. . .SDS. Three charge transfer mediators were evaluated: ferrocene carboxylic acid (FC1), ferrocene (FC2), and cobaltocene (CC) for Tr electrocatalytic oxidation. The FC1 charge mediator showed a relatively higher current response that was assisted by the electronic conduction of the polymer film. Moreover, SDS presented a great impact, resulting in the enhancement of the preconcentration and (or) accumulation of Tr ions at the interface, leading to faster electron transfer. In addition, the practical application of the proposed FC1 composite for the determination of Tr in real urine and serum samples was successfully achieved with adequate recovery results. Very low detection limits of 18.6 nM and 16 nM in the linear dynamic ranges of 7?300 ?M and 5?280 ?M, respectively, were obtained at the proposed sensor. Furthermore, the simultaneous determination of Tr with common interfering species, paracetamol (APAP), morphine (MO), dopamine (DA), ascorbic acid (AA) and uric acid (UA), proved excellent, with good resolution and large potential peaks separation. The excellent characteristics of the proposed composite such as high reproducibility, good sensitivity, selectivity, anti-interference ability, and good stability enhanced its application for determination of other narcotic drugs.Scopu

    Designed electrochemical sensor based on metallocene modified conducting polymer composite for effective determination of tramadol in real samples

    No full text
    A novel composite for the electrochemical sensing of tramadol (Tr) was developed by the inclusion of metallocene mediator between two layers of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) polymer, in presence of sodium dodecyl sulfate (SDS); (P/mediator/P…SDS). Three charge transfer mediators were evaluated: ferrocene carboxylic acid (FC1), ferrocene (FC2) and cobaltocene (CC) for Tr electrocatalytic oxidation. FC1-charge mediator showed relatively higher current response that was assisted by the electronic conduction of the polymer film. Moreover, SDS presented a great impact, resulting in the enhancement of the preconcentration/accumulation of Tr ions at the interface leading to faster electron transfer. In addition, the practical application of the proposed FC1 composite for the determination of Tr in real urine and serum samples was successfully achieved with adequate recovery results. Very low detection limits of 18.6 nM and 16 nM in the linear dynamic ranges of 7 M to 300 M and 5 M to 280 M, respectively, were obtained at the proposed sensor. Furthermore, the simultaneous determination of of Tr with common interfering species; paracetamol (PAPA), morphine (MO), dopamine (DA), ascorbic acid (AA) and uric acid (UA) proved excellent with good resolution and large potential peaks separation. The excellent characteristics of the proposed composite such as high reproducibility, good sensitivity, selectivity, anti-interference ability and good stability enhanced its application for determination of other narcotics drugs.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore